Skip to main content

Don’t look so smug: Your Tesla might be worse for the environment than a gas car

On a recent drive from Portland, Oregon to Seattle, I stopped for gas near one of Tesla’s new Supercharger quick-charge stations. While my car was filling with liquefied dinosaurs, I happened to overhear two Tesla owners chatting while they topped off with electrons. They were clearly preening to one another about their cars, brimming over with smugness. And, at least in theory, they had every reason to be.

Electric cars, and for that matter hybrids, have been marketed in no small part on the good karma you accrue for owning one. “Buy an electric car and save the world!” But just how smug should those Tesla and other EV drivers be? I wanted to find out. And the answers just may take Tesla, Volt and Leaf owners down a notch.

Recommended Videos

In the last year, a number of important studies tracking the environmental cost of EVs, and particularly lithium-ion batteries, have come out. What these studies have shown is that the environmental gap between internal combustion and electric power is not as wide as we want it to be, and that, regardless of carbon footprint, the process of making lithium-ion batteries leaves a lot to be desired.

Where did that battery come from?

Carl Sagan is famed for saying, “We live in a society exquisitely dependent on science and technology, in which hardly anyone knows about science and technology.” He could have been talking directly about lithium-ion batteries. Chances are you are sitting within three feet of something that uses lithium-ion technology, heck you are probably reading these words thanks to lithium-ion batteries. Yet, not that many people really understand what goes into them.

So how do they work? Like any battery, lithium-ions work by creating a flow of current (electrons) between a positively charged (missing electrons) cathode and a negatively charged anode (extra electrons), through a conductive electrolyte. Lithium makes a great battery because it is both very conductive, making it a good electrolyte, allows for extremely high electrical potential. And of course, because this electrochemical reaction is reversible, the batteries are readily rechargeable.

tesla charging
Image used with permission by copyright holder

As great as lithium is for batteries, it has a dark side as well: The stuff is downright nasty. Lithium is flammable and highly reactive, as anyone who has seen photos of burning a Tesla can attest, but that’s the least of our worries. The EPA has linked the use of extremely powerful solvents in the creation of lithium electrolytes and cathodes to everything from cancer to neurological problems. Specifically, the cobalt used in the creation of the most energy dense lithium-ion batteries is poisonous and extremely carcinogenic. Pulmonary, neurological, and respiratory problems have all been connected to cobalt exposure.

A good rule of thumb is that any industrial process that makes liberal use of the word ‘slurry’ is not good for pandas, or for that matter people. And, boy, does slurry come up a lot in the battery-making process.

Other combinations of lithium are not as bad, but none is exactly good. The lithium-iron phosphate used in lower energy density batteries is better in terms of its carcinogenic effect, but might be worse in terms of the impact on the biosphere.

Is it getting hot in here?

Clearly then, EVs and plug-in hybrids have environmental costs. What effects however, do lithium-ion batteries have on John Q. Polar Bear? Well, a recent study from Norway looked at the global-warming potential of the complete lifecycle of EVs, from mining to recycling. Previous studies hadn’t accounted for the energy-intensive process of building EVs, and missed the point: They’re not that much better than gasoline cars.

The best outcome for EVs was a 24-percent improvement in global-warming potential over the average gas powered car, and between 10 percent and 14 percent over diesel. These numbers are nothing to sneeze at, but they change radically depending on the source of electricity that EVs are powered on.

EVs that depend on coal for their electricity are actually 17 percent to 27 percent worse than diesel or gas engines.

The above numbers rely on the European power mix, which more heavily favors nuclear, hydroelectric, and renewable sources of energy than other parts of the world.

The global warming potential for EVs that rely on natural gas – generally considered to be the cleanest fossil fuel – show an improvement of only 12 percent over gasoline, and break even with diesel.

Most alarming, EVs that depend on coal for their electricity are actually 17 percent to 27 percent worse than diesel or gas engines. That is especially bad for the United States, because we derive close to 45 percent of our electricity from coal. In states like Texas, Pennsylvania, and Ohio, that number is much closer to 100 percent. That’s right folks; for residents of some of the most populous states, buying an EV is not only toxic, it’s warming the planet more than its gas-powered counterparts.

With cars that supposedly generate “zero tailpipe emissions,” how are these pollution numbers even possible? The simple answer is that as well as being messy to produce; battery production requires a tremendous amount of electricity. The initial production of the vehicle and the batteries together make up something like 40 percent of the total carbon footprint of an EV – nearly double that of an equivalent gasoline-powered vehicle.

tesla charging station
Image used with permission by copyright holder

The high initial carbon footprint of an EV can be offset when the car is powered by environmentally friendly energy sources like hydroelectric or wind. Unfortunately, when that same EV is powered by electricity generated from fossil fuels, the initial energy cost of EV production can’t be overcome and outweighs gasoline and diesel-powered vehicles.

Previous studies evaluating EVs have overlooked the high energy cost of production, and have focused on the fact that even coal-fired power generation is technically more efficient than internal combustion. But with a carbon footprint from production something like twice that of an ordinary car, an EV needs to be more than “a little” more efficient to make up for all the carbon it generated before it even rolled off the assembly line.

“No war for oil! Err, lithium!”

There are also some geopolitical concerns surrounding the switch from gasoline-powered vehicles to EVs, too. One of the selling points of EVs is that they allow us end our dependence on foreign oil and big oil companies. In fact, however, we might just be trading “big oil” in for “big lithium.”

Your Tesla may look sleek and clean on the outside, but you owe it to everyone to know the real cost.

The lithium-ion battery market is expected to grow to $22.5 billion in the next three years, and potentially double that by the end of the decade. That’s small compared to the market for oil, but that will continue to change if more people buy electrified cars and trucks.

As for getting rid of our dependence on foreign material, well … lithium isn’t quite rare, but deposits worth mining are. And, unfortunately for the United States and Europe, the big lithium deposits are in countries like Bolivia, China, and – drum roll please – Afghanistan. None of those countries has a sterling environmental track record.

Given the very real concerns about pollution from battery production, most of which takes place in China, this starts to matter a great deal. Especially when there is so much pressure to keep the prices of batteries down.

Conclusions

So what to make of all this?

Some of you have probably concluded that I hate EVs and don’t think anyone should buy them. That’s not the case. I believe electric vehicles – in one form or another – are likely the future of personal transportation.

But beneath their squeaky clean marketing, EVs are not a panacea, a solution or remedy for all environmental woes. As with any new technology, EVs bring an immense set of new problems; problems we should understand before we become irreversibly tied to the new technology.

Here’s what I suggest: If you are interested in an EV, you should know where your electricity comes from before you sign on the dotted line. If you live in a state with a high dependence on coal, an EV may not be the eco-friendly choice for you.

Ultimately, we can’t let EV-derived smugness get in the way of a real and serious conversation that needs to be had surrounding global warming and the effect energy consumption has on our planet.

Your Tesla may look sleek and clean on the outside, but you owe it to everyone to know the real cost.

Peter Braun
Former Digital Trends Contributor
Peter is a freelance contributor to Digital Trends and almost a lawyer. He has loved thinking, writing and talking about cars…
Tesla, Warner Bros. dodge some claims in ‘Blade Runner 2049’ lawsuit, copyright battle continues
Tesla Cybercab at night

Tesla and Warner Bros. scored a partial legal victory as a federal judge dismissed several claims in a lawsuit filed by Alcon Entertainment, a production company behind the 2017 sci-fi movie Blade Runner 2049, Reuters reports.
The lawsuit accused the two companies of using imagery from the film to promote Tesla’s autonomous Cybercab vehicle at an event hosted by Tesla CEO Elon Musk at Warner Bros. Discovery (WBD) Studios in Hollywood in October of last year.
U.S. District Judge George Wu indicated he was inclined to dismiss Alcon’s allegations that Tesla and Warner Bros. violated trademark law, according to Reuters. Specifically, the judge said Musk only referenced the original Blade Runner movie at the event, and noted that Tesla and Alcon are not competitors.
"Tesla and Musk are looking to sell cars," Reuters quoted Wu as saying. "Plaintiff is plainly not in that line of business."
Wu also dismissed most of Alcon's claims against Warner Bros., the distributor of the Blade Runner franchise.
However, the judge allowed Alcon to continue its copyright infringement claims against Tesla for its alleged use of AI-generated images mimicking scenes from Blade Runner 2049 without permission.
Alcan says that just hours before the Cybercab event, it had turned down a request from Tesla and WBD to use “an icononic still image” from the movie.
In the lawsuit, Alcon explained its decision by saying that “any prudent brand considering any Tesla partnership has to take Musk’s massively amplified, highly politicized, capricious and arbitrary behavior, which sometimes veers into hate speech, into account.”
Alcon further said it did not want Blade Runner 2049 “to be affiliated with Musk, Tesla, or any Musk company, for all of these reasons.”
But according to Alcon, Tesla went ahead with feeding images from Blade Runner 2049 into an AI image generator to yield a still image that appeared on screen for 10 seconds during the Cybercab event. With the image featured in the background, Musk directly referenced Blade Runner.
Alcon also said that Musk’s reference to Blade Runner 2049 was not a coincidence as the movie features a “strikingly designed, artificially intelligent, fully autonomous car.”

Read more
Audi halts vehicle deliveries to the U.S. as it mulls impact of tariffs
2021 Audi Q5

If you’d been thinking of buying an Audi, now might be the time.  The German brand, owned by the Volkswagen Group, has announced it would halt shipments to the U.S. in the wake of President Donald Trump’s 25% tariffs on all imported vehicles.
Audi is currently holding cars that arrived after the tariffs took effect, on April 3, in U.S. ports. But it still has around 37,000 vehicles in its U.S. inventory, which should be able to meet demand for about two months, according to Reuters.
Automakers on average hold enough cars to meet U.S. demand for about three months, according to Cox Automotive.
Audi should be particularly affected by the tariffs: The Q5, its best-selling model in the U.S., is produced in Mexico, while other models, such as the A3, A4, and A6 are produced in Germany.
Holding shipments is obviously a temporary measure to buy time for Audi and parent company Volkswagen. If tariffs stay in place, vehicle prices would likely have to go up accordingly, unless some production is shifted to the U.S. Volkswagen already has a plant in Chattanooga, Tennessee, and is planning a new plant in South Carolina. That latter plant, however, isn’t expected to be operational until 2027 and is currently dedicated to building electric vehicles for VW’s Scout Motors brand.
Other global automakers have also taken drastic measures in response to Trump’s tariffs. Jaguar Land Rover on April 5 said it is pausing shipments of its its UK-made cars to the United States this month. The British sports-luxury vehicle maker noted that the U.S. market accounts for nearly a quarter of its global sales, led by the likes of Range Rover Sports, Defenders, and Jaguar F-PACE.
And on April 3, Nissan, the biggest Japanese vehicle exporter to the United States, announced it will stop taking new U.S. orders for two Mexican-built Infiniti SUVs, the QX50 and QX55.

Read more
Waymo faces questions about its use of onboard cameras for AI training, ads targeting
Two people exit a Waymo taxi.

In an iconic scene from the 2002 sci-fi film Minority Report, on-the-run Agent John Anderton, played by Tom Cruise, struggles to walk through a mall as he’s targeted by a multitude of personalized ads from the likes of Lexus, Guinness and American Express, everytime hidden detectors identify his eyes.
It was clearly meant as a warning about a not-so-desirable dystopian future.
Yet, 23 years later that future is at least partlially here in the online world and threatens to spread to other areas of daily life which are increasingly ‘connected’, such as the inside of cars. And the new testing grounds, according to online security researcher Jane Manchun Wong, might very well be automated-driving vehicles, such as Waymo’s robotaxis.
On X, Wong unveiled an unreleased version of Waymo’s privacy policy that suggests the California-based company is preparing to use data from its robotaxis, including interior cameras, to train generative AI models and to offer targetted ads.
“Waymo may share data to improve and analyze its functionality and to tailor products, services, ads, and offers to your interests,” the Waymo’s unreleased privacy statement reads. “You can opt out of sharing your information with third parties, unless it’s necessary to the functioning of the service.”
Asked for comments about the unreleased app update, Waymo told The Verge that it contained “placeholder text that doesn’t accurately reflect the feature’s purpose”.
Waymo’s AI-models “are not designed to use this data to identify individual people, and there are no plans to use this data for targeted ads,” spokesperson Julia Ilina said.
Waymo’s robotaxis, which are operating on the streets of San Francisco, Los Angeles, Phoenix and Austin, do contain onboard cameras that monitor riders. But Ilina says these are mainly used to train AI models for safety, finding lost items, check that in-car rules are followed, and to improve the service.
The new feature is still under development and offers riders an opportunity to opt out of data collection, Ilina says.
But as we all get used to ads targeting based on everything that’s somehow connected to the web, it seems a once-distant vision of the future may be just around the corner.

Read more